Approximation of $\mathrm{S} \alpha \mathrm{S}$ Lévy processes in L_{p} norm

Jakob Creutzig
Technical University of Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany

Received 23 March 2005; accepted 21 November 2005
Communicated by Paul Nevai
Available online 17 February 2006

Abstract

We determine the weak asymptotic behavior of linear and Kolmogorov widths of the S α S Lévy process in the Banach spaces $L_{p}, p \in[1, \infty)$ for $\alpha \in(0,2)$. This complements earlier work by Maiorov and Wasilkowski, who treated the case $\alpha=2$, i.e., the Wiener process. © 2006 Elsevier Inc. All rights reserved.

MSC: Primary, 41A46;; secondary 60G52;41A25; 41A65
Keywords: Stable processes; Linear widths; Kolmogorov widths; Quantization numbers

1. Result

Let $\alpha \in(0,2]$. Recall that a real-valued random variable ξ is called symmetric α-stable ($\mathrm{S} \alpha \mathrm{S}$) iff for the characteristic function we have

$$
\hat{\xi}(\lambda)=\mathbb{E} \exp \{i \lambda \xi\}=\exp \left\{-|\lambda|^{\alpha} \mid \sigma^{\alpha}\right\}
$$

for some $\sigma \geqslant 0$. A real-valued stochastic process $X=\left(X_{t}\right)_{t \in[0,1]}$ is called an S α S Lévy process iff
(i) $\sum_{i=1}^{n} \beta_{i} X_{t_{i}}$ is an $\mathrm{S} \alpha \mathrm{S}$ variable for any $n \in \mathbb{N}, t_{i} \in[0,1], \beta_{i} \in \mathbb{R}$.
(ii) $X_{0}=0$ a.s., and X has independent increments.
(iii) $\left(X_{c t}\right)_{t \in[0,1 / c]} \stackrel{d}{=} c^{1 / \alpha}\left(X_{t}\right)_{t \in[0,1 / c]}$ for any $c \geqslant 1$.
(iv) X has a.s. cádlàg trajectories, that is, the paths of X are a.s. continuous from the right and convergent from the left in any point.

[^0](Note that an S2S Lévy motion is just an ordinary Wiener process.) Due to the last property, we may and will regard X also as a random variable with values in the Banach space L_{p}, where $p \in[1, \infty)$. This variable turns out to be $\mathrm{S} \alpha \mathrm{S}$ again, i.e., for any continuous linear functional $\varphi: L_{p} \rightarrow \mathbb{R}$ the induced real-valued random variable is $\mathrm{S} \alpha \mathrm{S}$.

We are interested in the question how good we may approximate X in L_{p} norm. More generally, assume that Y is a random variable in a Banach space E such that $\mathbb{E}\|Y\|^{q}<\infty$ for some $q>0$. Then set, for $n \in \mathbb{N}$,

$$
a_{n}(Y, E, q):=\inf \left\{\left(\mathbb{E}\left\|Y-T_{n}(Y)\right\|^{q}\right)^{\frac{1}{q}}: T_{n}: E \rightarrow E \text { linear, rk } T_{n}<n\right\}
$$

These numbers are called nth linear widths of Y. Moreover, denoting by $Q_{N}: E \rightarrow E / N$ the quotient mapping to a closed linear subspace N, we set

$$
d_{n}(Y, E, q):=\inf \left\{\left(\mathbb{E}\left\|Q_{N}(Y)\right\|^{q}\right)^{\frac{1}{q}}: N \subseteq E, \operatorname{dim} N<n\right\}
$$

the nth Kolmogorov width of Y. Note $\left\|Q_{N} x\right\|=d(x, N):=\inf _{y \in N}\|x-y\|_{E}$. It is not hard to see that, if Y is Radon (i.e., there are compact subsets $K_{n} \subseteq E$ such that $\mathbb{P}\left(Y \notin K_{n}\right) \rightarrow 0$), then

$$
\begin{equation*}
d_{n}(Y, E, q)=\inf _{y_{n}}\left(\mathbb{E}\left\|Y-Y_{n}\right\|^{q}\right)^{\frac{1}{q}} \tag{1}
\end{equation*}
$$

where the infimum runs over all E-valued random variables Y_{n} such that there exists an n-dimensional subspace N with $Y_{n} \in N$ a.s.

Thus, the Kolmogorov widths describe how well Y may be approximated using some n-dimensional random variable. Furthermore, we define

$$
r_{n}(Y, E, q):=\inf \left\{\left(\mathbb{E}\left\|Y-Y_{n}\right\|^{q}\right)^{\frac{1}{q}}:\left|\operatorname{supp} Y_{n}\right| \leqslant 2^{n}\right\} .
$$

This is referred to as nth (dyadic) quantization number.
If E has the approximation property, then all three sequences tend to zero iff Y is Radon and share some algebraic properties. Our aim is to determine their speed of convergence in weak asymptotics for the case of the $\mathrm{S} \alpha \mathrm{S}$ Lévy motion X in L_{p} spaces. (We note that in this case, we have for $\alpha<2$ that $\mathbb{E}\|X\|_{L_{p}}^{q}<\infty$ iff $q<\alpha$, while for $\alpha=2$, $\mathbb{E}\|X\|_{L_{p}}^{q}<\infty$ for all $q<\infty$; see [9, Chapters 3.1,5.2].) We will only consider weak asymptotics: for two sequences a_{n}, b_{n} of real numbers, let us write $a_{n} \preceq b_{n}$ iff $\lim _{n} a_{n} / b_{n}<\infty$, and $a_{n} \asymp b_{n}$ iff $a_{n} \preceq b_{n} \preceq a_{n}$. In [5,12-14], the weak asymptotics for the case $\alpha=2$ (i.e., the Wiener process) were determined. The results may be summarized as follows:

Theorem 1. Let W be a Wiener process and $p \in[1, \infty], q>0$. If $p<\infty$ then

$$
a_{n}\left(W, L_{p}, q\right) \asymp d_{n}\left(W, L_{p}, q\right) \asymp r_{n}\left(W, L_{p}, q\right) \asymp n^{-1 / 2} .
$$

In the case $p=\infty$ it holds that

$$
d_{n}\left(W, L_{\infty}, q\right) \asymp r_{n}\left(W, L_{\infty}, q\right) \asymp n^{-1 / 2}
$$

while

$$
a_{n}\left(W, L_{\infty}, q\right) \asymp n^{-1 / 2}(\log n)^{1 / 2} .
$$

We shall prove corresponding results for the case $\alpha<2$. For a_{n} and d_{n}, we can state an almost complete result about weak asymptotics:

Theorem 2. Let $\alpha \in(0,2)$ and X be an S α S Lévy motion. Then for $0<q<\alpha$ and $p \in[1, \infty)$ it holds that

$$
a_{n}\left(X, L_{p}, q\right) \asymp d_{n}\left(X, L_{p}, q\right) \asymp \begin{cases}n^{-1 / \alpha}, & p<\alpha, \\ n^{-1 / p}, & \alpha<p \leqslant 2, \\ n^{-1 / 2}, & p>2 .\end{cases}
$$

In the case $p=\alpha$, we have the bounds

$$
C^{-1} n^{-1 / \alpha} \leqslant d_{n}\left(X, L_{\alpha}, q\right) \leqslant a_{n}\left(X, L_{\alpha}, q\right) \leqslant C n^{-1 / \alpha}(\log n)^{1 / \alpha} .
$$

Note that in the case $p=\alpha$, there is a logarithmic gap in our estimates. It is interesting to note that the approximation error is of better order than for the Wiener process if $p<2$, and never worse, although the Wiener process has much better pathwise properties (continuity, etc.). For quantization numbers, we have two-sided estimates only in the case $p<\alpha$:

Theorem 3. Let $\alpha \in(0,2)$ and X be a $S \alpha S$ Lévy motion, $0<q<\alpha$ and $p \in[1, \infty)$. If $p<\alpha$, then

$$
r_{n}\left(X, L_{p}, q\right) \asymp n^{-1 / \alpha} .
$$

Further,

$$
r_{n}\left(X, L_{p}, q\right) \preceq \begin{cases}n^{-1 / p}, & \alpha<p \leqslant 2 \\ n^{-1 / 2}, & p>2\end{cases}
$$

We note in passing that for the case $p=\infty, X$ is not a Radon random element of L_{∞}, and one can easily conclude that in this case, neither of the defined sequences tends to zero.

It is also instructive to compare the results of Theorem 2 with the small deviation probabilities of the process. If Y is a random variable in a Banach space E, we set

$$
\varphi(Y, E, \varepsilon):=-\log (\mathbb{P}(\|Y\|>\varepsilon))
$$

It is well-known, see e.g., [11], that for the $\mathrm{S} \alpha \mathrm{S}$ Lévy motion X we have

$$
\begin{equation*}
\varphi\left(X, L_{p}, \varepsilon\right) \asymp \varepsilon^{-\alpha}, \quad \varepsilon \rightarrow 0 . \tag{2}
\end{equation*}
$$

We recall that for Gaussian processes the connection between φ, r_{n}, d_{n} and a_{n} is very close; in the polynomial case (and in L_{p} norm, $p \in(1, \infty)$), all three sequences always have the same weak asymptotics, which is also the weak asymptotic of the pseudo-inverse of φ,

$$
b_{n}(X, E):=\inf \{\varepsilon>0: \varphi(X, E, \varepsilon) \leqslant n\} .
$$

(We refer to [4,5,10] for more information about this connection.) By comparing Theorem 2 and (2), we recognize that such a connection is not true in general for stable processes; in contrast, d_{n} and b_{n} may differ by polynomial factors, even in the Hilbert space $\left(L_{2}\right)$ case.

2. Tools

We shall need a number of technical tools in order to prove our results. The first such tool is a straightforward generalization of the arguments provided e.g. in [9], pp. 139-141, and treats the ℓ_{p} sums of norms of i.i.d. stable random elements of Banach spaces. Throughout the rest of the article, we will assume always that $\alpha \in(0,2)$.

Proposition 4. Let $X_{i}, i \leqslant n$, denote a sequence of i.i.d. $S \alpha S$ variables in a Banach space E. Then, for any $0<q<\alpha, p \in[1, \infty]$,

$$
\left(\mathbb{E}\left\|\left(\left\|X_{i}\right\|_{E}\right)_{i=1}^{m}\right\|_{\ell_{p}^{m}}^{q}\right)^{\frac{1}{q}} \leqslant K_{\alpha, p, q} \cdot \begin{cases}m^{1 / \alpha}\left\|X_{1}\right\|_{q}, & p<\alpha \\ m^{1 / p}\left\|X_{1}\right\|_{q}, & p>\alpha \\ \left\|X_{1}\right\|_{q} m^{1 / \alpha}[\log (1+m)]^{1 / \alpha}, & p=\alpha .\end{cases}
$$

Here, $K_{\alpha, p, q}$ depends on α, p, q solely.
Our next tool is an estimate between b_{n} and r_{n}, valid for a more general class of random variables than symmetric stable ones: let us say that a random variable X in a Banach space E has the Anderson property iff

$$
\begin{equation*}
\mathbb{P}\left(\|X-x\|_{E}>t\right) \geqslant \mathbb{P}\left(\|X\|_{E}>t\right) \quad \forall x \in E, \quad t>0 . \tag{A}
\end{equation*}
$$

It is well-known that centered Gaussian elements have the Anderson property; from this and the fact that $S \alpha S$ elements can be represented by a mixture of centered Gaussian elements, we easily infer that $\mathrm{S} \alpha \mathrm{S}$ processes also have the Anderson property. The following inequality was essentially proved in [5].

Lemma 5. Let X be a random variable in E with the Anderson property (A) and assume that $\mathbb{E}\|X\|^{q}<\infty$. Then

$$
b_{2 n}(X, E) \leqslant c_{q} r_{n}(X, E, q)
$$

We will also need an inequality similar in spirit to an inequality of Carl for entropy and approximation numbers, see [2, Theorem 3.1.1]; the result is taken from [3] and proved in Appendix A.

Theorem 6. Let $r, q \in(0, \infty)$ be arbitrary with $q>r$, and let $\sigma>0$. There exists a constant $C_{\sigma, q, r}>0$ such that for any Banach space E, any Radon random variable Y in E with $\mathbb{E}\|Y\|^{q}<$ ∞ and any $n \in \mathbb{N}$ the estimate

$$
\sup _{k \leqslant n} k^{\sigma} \cdot r_{k}(Y, E, r) \leqslant C_{\sigma, p, r} \cdot \sup _{k \leqslant n} k^{\sigma} \cdot d_{k}(Y, E, q)
$$

is valid.
This result is no longer true for $r=q$, as simple examples show (e.g., [8, Example 6.4]).

Note that due to (1), for any Radon variable Y we have $d_{n}(Y, E, q) \leqslant a_{n}(Y, E, q)$. As a consequence of these estimates, we find:

Corollary 7. Let Y be a Radon random variable in a Banach space E with the Anderson property (A) and $\mathbb{E}\|Y\|^{q}<\infty$ for some $q>0$, and let $\sigma>0, r \in(0, q)$.
(a) We have the implications

$$
\begin{aligned}
a_{n}(Y, E, q) & \preceq n^{-\sigma} \Rightarrow d_{n}(Y, E, q) \preceq n^{-\sigma} \\
\Rightarrow r_{n}(Y, E, r) & \preceq n^{-\sigma} \Rightarrow b_{n}(Y, E) \preceq n^{-\sigma} .
\end{aligned}
$$

(b) Assume that $d_{n}(Y, E, q) \preceq n^{-\sigma}$ while $r_{n}(Y, E, r) \succeq n^{-\sigma}$. Then

$$
d_{n}(Y, E, q) \asymp r_{n}(Y, E, r) \asymp n^{-\sigma} .
$$

(c) If $a_{n}(Y, E, q) \preceq n^{-\sigma}$ and $b_{n}(Y, E) \succeq n^{-\sigma}$, it follows that

$$
a_{n}(Y, E, q) \asymp d_{n}(Y, E, q) \asymp r_{n}(Y, E, r) \asymp b_{n}(Y, E) \asymp n^{-\sigma} .
$$

Proof. Part (a) is straightforward, and part (c) follows immediately from parts (a), (b) and Lemma 5. Hence, part (b) is the interesting conclusion. We will use an argument due to Carl (cf. [1, p. 106]). We know that $d_{n}(Y, E, q) \leqslant c_{1} n^{-\sigma}$ while $n^{-\sigma} \leqslant c_{2} r_{n}(Y, E, r)$. Applying Theorem 6 for the exponent 2σ, we infer the following inequalities for any $n, m \in \mathbb{N}$:

$$
\begin{aligned}
(m n)^{\sigma} & \leqslant c_{2}(m n)^{2 \sigma} r_{m n}(Y, E, r) \\
& \leqslant c_{2} \sup _{k \leqslant m n} k^{2 \sigma} r_{k}(Y, E, r) \\
& \leqslant c_{3} \sup _{k \leqslant m n} k^{2 \sigma} d_{k}(Y, E, r) \\
& \leqslant c_{3} \sup _{k \leqslant n} k^{2 \sigma} d_{k}(Y, E, r)+c_{3} \sup _{n<k \leqslant m n} k^{2 \sigma} d_{k}(Y, E, r) \\
& \leqslant c_{4} n^{\sigma}+c_{5}(m n)^{2 \sigma} d_{n}(Y, E, r),
\end{aligned}
$$

hence

$$
d_{n}(Y, E, r) \geqslant c_{5}(m n)^{-\sigma} \cdot\left(1-\frac{c_{4}}{m^{\sigma}}\right) .
$$

If we choose $m=\left\lfloor\left(2 c_{4}\right)^{1 / \sigma}\right\rfloor+1$, it follows that $d_{n}(Y, E, r) \geqslant c_{6} n^{-\sigma}$ for all $n \in \mathbb{N}$.
Further, we will employ the concept of spectral measures and parameters. Recall that for a Radon $\mathrm{S} \alpha$ S element Y in a Banach space E there is a measure m on E such that for any $f \in E^{*}$ (the topological dual) we have

$$
\mathbb{E} e^{i f(Y)}=\exp \left\{-1 / 2 \int_{E}|f(x)|^{p} \mathrm{~d} m(x)\right\}
$$

This measure m need not be unique; however, the quantity

$$
\sigma_{\alpha}(Y):=\left(\int_{E}\|x\|^{\alpha} \mathrm{d} m(x)\right)^{1 / \alpha}
$$

is finite and independent of the special choice of m. In the case of an $S \alpha S$ Lévy motion, a possible choice for the spectral measure is the distribution of the simple jump process defined as follows:

Let U be a uniform variable on $[0,1]$, and define $\xi_{t}:=\mathbb{1}_{U \leqslant t}$. Denote by m the distribution of ξ, regarded as a random element in $L_{p}([0,1])$. Then m is a spectral measure for an $\mathrm{S} \alpha \mathrm{S}$ Lévy motion $X . \mathrm{S} \alpha \mathrm{S}$ variables and their spectral measures behave nicely under bounded linear mappings.

Lemma 8. If Y is $\mathrm{S} \alpha \mathrm{S}$ on the Banach space E with a spectral measure m and $A: E \rightarrow F$ is a bounded linear operator between Banach spaces, then $A(Y)$ is $S \alpha S$ on F with spectral measure $m \circ A^{-1}$. In particular,

$$
\sigma_{\alpha}(A(Y))=\left(\int_{E}\|A(x)\|^{\alpha} \mathrm{d} \mu(x)\right)^{1 / \alpha}
$$

Proof. For any $f \in F^{*}$ we have

$$
\begin{aligned}
\mathbb{E} e^{i f(A(Y))}=\mathbb{E} e^{i\left(A^{*} f\right)(Y)} & =\exp \left\{-1 / 2 \int_{E}\left|A^{*} f(x)\right|^{\alpha} \mathrm{d} m(x)\right\} \\
& =\exp \left\{-1 / 2 \int_{F}|f(y)|^{\alpha} \mathrm{d} m \circ A^{-1}(y)\right\} .
\end{aligned}
$$

We shall combine this with the following remarkable fact, which follows from Theorem 9.27 of [9] and Proposition 11.11 from [6]:

Theorem 9. Assume that $p \in[1, \infty)$ satisfies $p>\alpha$, and that E is a quotient space of $L_{p}([0,1])$ (i.e., of the form $E=L_{p}([0,1]) / N$, where N is a closed linear subspace of $L_{p}[0,1]$). Then, for any $S \alpha S$ variable Y in E and any $q<\alpha$, we have

$$
\left(\mathbb{E}\|Y\|_{E}^{q}\right)^{\frac{1}{q}} \leqslant C_{p, q, \alpha} \cdot \sigma_{\alpha}(Y),
$$

where $C_{p, q, \alpha}$ depends on p, q, α solely.
We mention that the reverse inequality,

$$
\left(\mathbb{E}\|Y\|_{E}^{q}\right)^{\frac{1}{q}} \geqslant c_{p, q, \alpha} \cdot \sigma_{\alpha}(Y),
$$

is valid without any assumption on E.
Combining these results, we arrive at:
Corollary 10. Let Y be $S \alpha S$ in $L_{p}, p \in[1, \infty)$, where $p>\alpha>q>0$. If m is a spectral measure of Y and Z is a random variable distributed according to $m /\left(m\left(L_{p}\right)\right)$, then

$$
a_{n}\left(Y, L_{p}, q\right) \asymp a_{n}\left(Z, L_{p}, \alpha\right)
$$

and

$$
d_{n}\left(Y, L_{p}, q\right) \asymp d_{n}\left(Z, L_{p}, \alpha\right)
$$

Proof. We will only give the upper bound, the lower bound being similar. Regard for instance d_{n}. Let N be a subspace of L_{p} such that

$$
\left(\mathbb{E}\left\|Q_{N} Z\right\|^{\alpha}\right)^{1 / \alpha} \leqslant 2 d_{n}\left(Z, L_{p}, \alpha\right)
$$

By Lemma 8 we know that $Q_{N} Y$ is $\mathrm{S} \alpha \mathrm{S}$ in $L_{p}[0,1] / N$, and that

$$
\sigma_{\alpha}\left(Q_{N} Y\right)=m\left(L_{p}\right)\left(\mathbb{E}\left\|Q_{N} Z\right\|^{\alpha}\right)^{1 / \alpha}
$$

Theorem 9 applies, and we derive that

$$
\left(\mathbb{E}\left\|Q_{N} Y\right\|^{q}\right)^{1 / q} \leqslant 2 C_{p, q, \alpha} d_{n}\left(Z, L_{p}, \alpha\right)
$$

This implies trivially that

$$
d_{n}\left(Z, L_{p}, q\right) \leqslant 2 C_{p, q, \alpha} d_{n}\left(Z, L_{p}, \alpha\right)
$$

Lastly, we quote two classical results from the theory of n-widths. For a bounded linear operator $u: E \rightarrow F$ between Banach spaces, denote

$$
d_{n}(u):=\inf _{N} \sup _{\|x\| \leqslant 1} \inf _{y \in N}\|u(x)-y\|,
$$

where the leftmost inf runs over all n-dimensional subspaces $N \subseteq F$. These are the classical Kolmogorov n-widths of an operator.

The following result is due to Gluskin, see [7]:
Theorem 11. Let $p \in[1, \infty)$ and denote by $\mathrm{i}_{1, p}^{m}: \ell_{1}^{m} \rightarrow \ell_{p}^{m}$ the identity mapping. There is $c_{p}>0$ such that for $n<c_{p} m$ we have

$$
d_{n}\left(\mathrm{i}_{1, p}^{m}\right) \asymp \begin{cases}1, & p \leqslant 2 \\ n^{1 / p-1 / 2}, & p>2 .\end{cases}
$$

Lastly, we need a classical estimate for linear widths. The linear widths of a precompact subset B of a Banach space E are defined as

$$
a_{n}(B, E):=\inf \left\{\sup _{x \in B}\left\|x-v_{n}(x)\right\|: v_{n}: E \rightarrow E, \operatorname{rk}\left(v_{n}\right) \leqslant n\right\} .
$$

Then, as reported e.g. in [15, Theorem VII.1.1.1], we have:
Theorem 12. Let I be the integral operator, $I(f)(t):=\int_{0}^{t} f(s) \mathrm{d}(s)$, and set $B_{1, p}:=\{I(f)$: $\left.f \in L_{1},\|f\|_{L_{1}} \leqslant 1\right\} \subseteq L_{p}$. Then

$$
a_{n}\left(B_{1, p}, L_{p}\right) \asymp \begin{cases}n^{-1 / p}, & p \leqslant 2 \\ n^{-1 / 2}, & p>2 .\end{cases}
$$

3. Proofs

Proof of Theorem 2, upper bounds for $p \leqslant 2$. For the upper bound, we infer from (1) that $d_{n} \leqslant a_{n}$ always, hence we only have to consider $a_{n}\left(X, L_{p}, q\right)$. We use the simplest equidistant approximation scheme. For $m \in \mathbb{N}$, denote $t_{i}:=i / m$ for $i \leqslant m$, and set

$$
\hat{X}_{t}^{(m)}:=X_{t}-X_{t_{i}}, \quad t \in\left[t_{i}, t_{i+1}\right) .
$$

Thus, $\hat{X}_{t}^{(m)}$ is a sequence of m independent standard Lévy processes with lifetime $1 / m$, starting sequentially at the times t_{i}. Secondly, denote

$$
\bar{X}_{t}^{(m)}:=X_{t_{i}}, \quad t \in\left[t_{i}, t_{i+1}\right] .
$$

Hence, for any m we have $X-\bar{X}^{(m)}=\hat{X}^{(m)}$. We would like to take $\bar{X}^{(m)}$ as an approximating element for X. A slight drawback is that \bar{X} is not of the form required by the definition of the linear widths, since the coordinate functionals are not well-defined on L_{p}. However, we can easily find a workaround by introducing, for $\delta>0$, an approximating operator

$$
u^{m, \delta}: L_{p} \rightarrow L_{p}, \quad u^{m, \delta}(f)(t):=\frac{1}{\delta} \int_{t_{i}}^{t_{i}+\delta} f(s) \mathrm{d} s, \quad t \in\left(t_{i}, t_{i+1}\right]
$$

This is obviously bounded from L_{p} to L_{p}, and since by the scaling property and stationarity of increments we have

$$
\begin{aligned}
X_{t_{i}}-\frac{1}{\delta} \int_{t_{i}}^{t_{i}+\delta} X_{s} \mathrm{~d} s & =\delta^{-1} \int_{t_{i}}^{t_{i}+\delta}\left(X_{s}-X_{t_{i}}\right) \mathrm{d} s \\
& \stackrel{d}{=} \delta^{1 / \alpha} \int_{0}^{1} X_{r} \mathrm{~d} r
\end{aligned}
$$

we easily conclude that, for fixed m,

$$
\inf _{\delta>0} \mathbb{E}\left\|\bar{X}^{(m)}-u^{m, \delta}(X)\right\|_{L_{p}}^{q} \leqslant \inf _{\delta>0} \mathbb{E} \sup _{i}\left|X_{t_{i}}-\frac{1}{\delta} \int_{t_{i}}^{t_{i}+\delta} X_{S}\right|^{q}=0,
$$

and hence

$$
\begin{equation*}
a_{m}(X)^{q} \leqslant \inf _{\delta>0}\left(\mathbb{E}\left\|X-u^{m, \delta}(X)\right\|_{L_{p}}^{q}\right)^{\frac{1}{q}} \leqslant \max \left\{1,2^{\frac{1}{q}}\right\} \cdot\left(\mathbb{E}\left\|\hat{X}^{(m)}\right\|_{L_{p}}^{q}\right)^{\frac{1}{q}} . \tag{3}
\end{equation*}
$$

Our task is now to estimate the last expectation. To this end, we note that

$$
\begin{aligned}
\left\|\hat{X}^{(m)}\right\|_{L_{p}[0,1]} & \stackrel{d}{=}\left\|\left(\left\|X^{[i]}\right\|_{L_{p}[0,1 / m]}\right)_{i=1}^{m}\right\|_{\ell_{p}^{m}} \\
& \stackrel{d}{=} m^{-1 / p-1 / \alpha} \cdot\left\|\left(\left\|X^{[i]}\right\|_{L_{p}[0,1]}\right)_{i=1}^{m}\right\|_{\ell_{p}^{m}}
\end{aligned}
$$

where $\left(X^{[1]}, \ldots, X^{[m]}\right)$ is a sequence of independent $S \alpha S$ Lévy processes on $[0,1]$. Now we apply Proposition 4 to see that

$$
\left(\mathbb{E}\left\|\hat{X}^{(m)}\right\|_{L_{p}[0,1]}^{q}\right)^{\frac{1}{q}} \leqslant K \cdot \begin{cases}m^{1 / \alpha}, & p<\alpha, \\ m^{1 / p}, & p>\alpha \\ m^{1 / \alpha}[\log (1+m)]^{1 / \alpha}, & p=\alpha\end{cases}
$$

Inserting this into estimate (3) reveals the upper bounds for a_{m} in the case $p \leqslant 2$.
Proof of Theorem 2, upper bounds for $p>2$. By Corollary 10, we have to find estimates only for the numbers $a_{n}\left(\xi, L_{p}, \alpha\right), d_{n}\left(\xi, L_{p}, \alpha\right)$, where $\xi_{t}:=\mathbb{1}_{U} \leqslant t$ with U uniformly distributed on [0, 1]. Again, upper bounds have to be established only for a_{n}. Note that obviously, for any bounded subset $B \subseteq E$ of a Banach space E, we have $a_{n}(B, E)=a_{n}(\bar{B}, E)$, where \bar{B} denotes
the closure of B in E. Now, every path of ξ lies within the closure of $B_{1, p}$ in L_{p}. Indeed, for any $t>0$ we may define a sequence

$$
f_{n}(s):= \begin{cases}0, & s<t-1 / n \\ n, & s \in[t-1 / n, t] \\ 0, & s>t\end{cases}
$$

We note that $\left\|f_{n}\right\|_{L_{1}}=1$ and that $I\left(f_{n}\right)$ tends to $\mathbb{1}_{s \leqslant t}$ in L_{p} norm. Hence, for any outcome of U, the path $\mathbb{1}_{U \leqslant t}$ is in $\overline{B_{1, p}}$, and thus, for a suitable $v_{n}: L_{p} \rightarrow L_{p}$ of rank at most n, we infer that

$$
\left(\mathbb{E}\left\|\xi-v_{n}(\xi)\right\|_{L_{p}}^{\alpha}\right)^{1 / \alpha} \leqslant \sup _{s}\left\|\mathbb{1}_{s \leqslant t}-v_{n}\left(\mathbb{1}_{s \leqslant t}\right)\right\|_{L_{p}} \leqslant 2 a_{n}\left(\overline{B_{1, p}}, L_{p}\right)=2 a_{n}\left(B_{1, p}, L_{p}\right) .
$$

From Theorem 12 we deduce the desired upper estimates for $a_{n}\left(\xi, L_{p}, \alpha\right)$.
Before we turn to lower bounds, some further preparations are in order. Let us introduce a projection in L_{p} : given $k \in \mathbb{N}$, denote σ_{k} the σ-algebra over [0,1$]$ generated by the intervals $[(i-1) / k, i / k]$, and define, for any $f \in L_{p}$,

$$
P^{k}(f):=\mathbb{E}\left(f \mid \sigma_{k}\right)
$$

By Jensen's inequality for conditional expectations, we know that $P^{k}: L_{p} \rightarrow L_{p}$ is a projection of norm 1. Furthermore, its image $L_{p}^{(k)}:=P^{k}\left(L_{p}\right)$ is isomorphic to the sequence space ℓ_{p}^{k}; to be more precise, the isomorphism $\tau_{k}: \ell_{p}^{k} \rightarrow L_{p}^{(k)}$, defined by

$$
\tau_{k}\left(\left(x_{i}\right)_{i \leqslant k}\right):=\sum_{i=1}^{k} x_{i} \cdot \mathbb{1}_{[(i-1) / k, i / k]}
$$

satisfies

$$
\begin{equation*}
\left\|\tau_{k}\left(\left(x_{i}\right)_{i \leqslant k}\right)\right\|_{L_{p}}=k^{-1 / p} \cdot\left\|\left(x_{i}\right)_{i \leqslant k}\right\|_{\ell_{p}^{k}} \tag{4}
\end{equation*}
$$

for any $\left(x_{i}\right)_{i \leqslant k} \in \ell_{p}^{k}$. Further, we mention a useful property of d_{n} : if X is a random element in the Banach space E and if $u: E \rightarrow F$ is a bounded linear operator, then $d_{n}(u(X), F, q) \leqslant\|u\|$. $d_{n}(X, E, q)$.

A further auxiliary lemma is a technical generalization of Theorem 11. Recall the notion $d(x, N):=\inf _{y \in N}\|x-y\|$.

Lemma 13. For any $p \in[1, \infty)$, there are $c_{1}(p), c_{2}(p), c_{3}(p)>0$ such that, for any $m \in \mathbb{N}$ and any subspace $N \subseteq \ell_{p}^{m}$ of dimension at most $c_{1}(p) \cdot m$ there exist distinct indices $i_{1}, \ldots, i_{k} \in$ $\{1, \ldots, m\}$ with $k \geqslant c_{2}(p) \cdot m$ and such that for any $j \leqslant k$ we have

$$
d\left(e_{i_{j}}, N\right) \geqslant \begin{cases}c_{3}(p), & p \leqslant 2, \\ c_{3}(p) m^{1 / p-1 / 2}, & p \geqslant 2 .\end{cases}
$$

Proof. Denote

$$
\alpha_{m}:= \begin{cases}1, & p \leqslant 2, \\ m^{1 / p-1 / 2}, & p \geqslant 2 .\end{cases}
$$

Set $c_{1}(p):=\min \left\{1 / 2, c_{p}\right\}$, where c_{p} is the constant from Theorem 11. We infer that for any subspace $N \subseteq \ell_{p}^{m}$ such that $n:=\operatorname{dim} N \leqslant c_{1}(p) m$ there is some index i_{1} such that $d\left(i_{1}, N\right) \geqslant C_{p} \alpha_{m}$. Since the assertion of the lemma becomes stronger when N is enlarged, we may assume without loss of generality that $\left(c_{1}(p) / 2\right) m \leqslant n \leqslant c_{1}(p) m$. Consider now the projection

$$
P_{i_{1}}: \ell_{p}^{m} \rightarrow \ell_{p}^{m-1}, \quad\left(x_{1}, \ldots, x_{m}\right) \mapsto\left(x_{1}, \ldots, x_{i_{1}-1}, x_{i_{1}+1}, \ldots, x_{m}\right)
$$

and $N_{1}:=P_{i_{1}}(N) \subseteq \ell_{p}^{m-1}$. Obviously, $\operatorname{dim} N_{1}=n-1 \leqslant c_{1}(p) m-1 \leqslant c_{1}(p)(m-1)$, hence we may find i_{2} such that $d\left(e_{i_{2}}, N_{1}\right) \geqslant C_{p} \alpha_{m-1}$. Iterating this procedure, we can find a sequence i_{1}, \ldots, i_{n} of distinct indices such that for any $k \leqslant n$ we have $d\left(e_{i_{k}}, P_{i_{k-1}} \ldots P_{i_{1}}(N)\right) \geqslant C_{p} \alpha_{m-k}$. However, the projections $P_{i_{j}}$ are contractions, and hence it follows that

$$
\begin{aligned}
d\left(e_{i_{k}}, N\right) & \geqslant d\left(P_{i_{k-1}} \ldots P_{i_{1}}\left(e_{i_{k}}\right), P_{i_{k-1}} \ldots P_{i_{1}}(N)\right) \\
& =d\left(e_{i_{k}}, P_{i_{k-1}} \ldots P_{i_{1}}(N)\right) \\
& \geqslant C_{p} \alpha_{m-k}, \quad k \leqslant n .
\end{aligned}
$$

Since $n \leqslant c_{1}(p) m \leqslant m / 2$, we conclude that for $k \leqslant n$ we have

$$
\alpha_{m-k} \geqslant \alpha_{m / 2} \geqslant \max \left\{1,2^{1 / p-1 / 2}\right\} \alpha_{m} .
$$

Summarizing, we found $n \geqslant\left(c_{p} / 2\right) m$ distinct indices i_{j} such that

$$
d\left(e_{i_{j}}, N\right) \geqslant C_{p} \max \left\{1,2^{1 / p-1 / 2}\right\} \alpha_{m}
$$

for any j.
Proof of Theorem 2, lower bounds. The lower bounds in the case $p<\alpha$ are now very simple thanks to Corollary 7, part (c), the already proven upper estimate for a_{n}, and Eq. (2). For $p=\alpha$, we pick some $\tilde{p}<p$ and note that $d_{n}\left(X, L_{p}, q\right) \geqslant d_{n}\left(X, L_{\tilde{p}}, q\right)$. Hence, we only have to worry about the case $p>\alpha$. Here, we again may employ Corollary 10, and have to find lower bounds for $d_{n}\left(\xi, L_{p}, \alpha\right)$ only, where $\xi_{t}:=\mathbb{1}_{U \leqslant t}$ with U uniformly distributed on $[0,1]$. Using the projection P^{k} introduced above, we infer that

$$
d_{n}\left(P^{k}(\xi), L_{p}^{(k)}, \alpha\right) \leqslant d_{n}\left(\xi, L_{p}, \alpha\right)
$$

and further

$$
d_{n}\left(\left(\tau_{k}\right)^{-1} P^{k}(\xi), \ell_{p}^{k}, \alpha\right) \leqslant k^{1 / p} \cdot d_{n}\left(\xi, L_{p}, \alpha\right)
$$

Let e_{i} be the standard basis in ℓ_{p}^{k}, and let us now look at $\left(\tau_{k}\right)^{-1} P^{k}(\xi)$. The distribution of this random element in ℓ_{p}^{k} may be simulated as follows: First, we choose a random variable V, uniformly distributed on $[0,1]$; next we choose an independently and uniformly distributed $l \in\{1, \ldots, k\}$. Then

$$
\left(\tau_{k}\right)^{-1} P_{k}(\xi) \stackrel{d}{=} \eta:=V \cdot e_{l}+\sum_{i>l} e_{i} .
$$

Hence,

$$
\begin{equation*}
d_{n}\left(\xi, L_{p}, \alpha\right) \geqslant k^{-1 / p} \cdot d_{n}\left(\eta, \ell_{p}^{k}, \alpha\right) . \tag{5}
\end{equation*}
$$

Due to the independence of V and l, we infer for

$$
\hat{\eta}=e_{l} / 2+\sum_{i>l} e_{i}
$$

that

$$
d_{n}\left(\eta, \ell_{p}^{k}, \alpha\right) \geqslant d_{n}\left(\hat{\eta}, \ell_{p}^{k}, \alpha\right)
$$

Consider now the mapping $\phi: \ell_{p}^{k} \rightarrow \ell_{p}^{k}$, defined by $\phi\left(e_{1}\right):=e_{1}, \phi\left(e_{i}\right):=e_{i}-e_{i-1}, i>1$. Obviously, $\|\phi\| \leqslant 2$, hence

$$
d_{n}\left(\phi(\hat{\eta}), \ell_{p}^{k}, \alpha\right) \leqslant 2 d_{n}\left(\hat{\eta}, \ell_{p}^{k}, \alpha\right)
$$

Note that

$$
\phi(\hat{\eta})= \begin{cases}\left(e_{l}+e_{l+1}\right) / 2, & l<k \\ e_{l} / 2, & l=k\end{cases}
$$

We now choose $k=2 m$ and denote by

$$
\pi: \ell_{p}^{2 m} \rightarrow \ell_{p}^{m}, \quad\left(x_{i}\right)_{i \leqslant 2 m} \mapsto\left(x_{2 i}\right)_{i \leqslant m}
$$

the projection onto the even coordinates. Then, with $\kappa=\lceil\imath / 2\rceil$ equidistributed on $\{1, \ldots, m\}$, we have $\pi(\phi(\hat{\eta}))=e_{\kappa} / 2$, and thus by virtue of (5)

$$
\begin{equation*}
d_{n}\left(e_{\kappa}, \ell_{p}^{m}, \alpha\right) \leqslant 4 d_{n}\left(\eta, \ell_{p}^{2 m}, \alpha\right) \leqslant 4(2 m)^{1 / p} d_{n}\left(\xi, L_{p}, \alpha\right) \tag{6}
\end{equation*}
$$

The random variable e_{κ}, at last, is so simple that we can study it directly. For any subspace $N \subseteq \ell_{p}^{m}$ we have

$$
\left[\mathbb{E} d\left(e_{\kappa}, N\right)^{\alpha}\right]^{1 / \alpha}=\left[\frac{1}{m} \sum_{i=1}^{m} d\left(e_{i}, N\right)^{\alpha}\right]^{1 / \alpha} .
$$

Applying Lemma 13, we may, for $\operatorname{dim} N \leqslant c_{1}(p) m$, estimate

$$
\left[\mathbb{E} d\left(e_{\kappa}, N\right)^{\alpha}\right]^{1 / \alpha} \geqslant c_{2}(p)^{1 / \alpha} c_{3}(p) \cdot \max \left\{1, m^{1 / p-1 / 2}\right\}
$$

Thus, if we choose, for given $n \in \mathbb{N}$ the value $m \in \mathbb{N}$ such that $\left(c_{1}(p) / 2\right) m \leqslant n \leqslant c_{1}(p) m$, we infer that

$$
d_{n}\left(e_{\kappa}, N, \ell_{p}^{m}\right) \geqslant c_{4}(p) \min \left\{1, n^{1 / p-1 / 2}\right\}
$$

From (6) it now follows that

$$
d_{n}\left(\xi, L_{p}, \alpha\right) \geqslant c_{5}(p) \min \left\{n^{-1 / p}, n^{-1 / 2}\right\}
$$

which we wanted to prove.

Appendix A.

Proof of Theorem 6. The proof of Theorem 6 follows the idea of the original Carl inequality; first one establishes estimates for finite-dimensional quantization depending only on dimension and expected norm of the quantized variable, then one decomposes the original random variable into a sum of variable with controllable dimension and expected norm.

For convenience, we introduce non-dyadic quantization numbers,

$$
\rho_{n}(Y, E, q):=\inf \left\{\left(\mathbb{E}\left\|Y-Y_{n}\right\|^{q}\right)^{1 / q}:\left|\operatorname{supp} Y_{n}\right| \leqslant n\right\} .
$$

Lemma 14. Let E be a Banach space, $r, q \in(0, \infty)$ with $r<q$, and X a Radon random variable in E with $\mathbb{E}\|X\|^{q}<\infty$ and $\mathrm{rk} X \leqslant d$ for some $d \in \mathbb{N}$. Then

$$
\rho_{n}(X, E, r) \leqslant 6 C_{r, q} \cdot\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \cdot n^{-(1-r / q) / d}, \quad n \in \mathbb{N} .
$$

Here $C_{r, q}$ depends solely on r, q.
We note that this estimate is not optimal in the order of decay of ρ_{n}, compare Lemma 6.6 in [8]; however, the constant $C_{r, q}$ is independent of X and d, which surprisingly is more important for us than the correct order.

We shall employ the concept of entropy numbers in the proof of the lemma; for a subset B of a Banach space E, set

$$
\varepsilon_{n}(B):=\inf \left\{\sup _{x \in B} d(x, S): S \subseteq E,|S| \leqslant n\right\}
$$

It is well-known (compare, e.g., (1.3.14) of [2]) that for $B=B_{E_{0}}$ the unit ball of some d-dimensional subspace E_{0} we have the estimate

$$
\begin{equation*}
\varepsilon_{n}(B) \leqslant 4 n^{-1 / d} . \tag{A.1}
\end{equation*}
$$

Proof of Lemma 14. Let $X \in E_{0}$ a.s., $\operatorname{dim} E_{0} \leqslant d$. Set $B:=B_{E_{0}}, \beta:=-r / q$ and

$$
\lambda:=\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \cdot \varepsilon_{n}(B)^{\beta} .
$$

Then

$$
\varepsilon_{n}(\lambda B)=\lambda \cdot \varepsilon_{n}(B)=\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \cdot \varepsilon_{n}(B)^{1-r / q} .
$$

Thus, we know that there exists $S \subseteq E$ such that $|S| \leqslant n$ and

$$
\sup _{x \in \lambda B} d(x, S) \leqslant 2\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \cdot \varepsilon_{n}(B)^{1-r / q} .
$$

Let μ be the distribution of X. We take S as a quantization codebook for X and obtain, with $C_{r}:=\max \left\{1,2^{1 / r-1}\right\}$, that

$$
\begin{aligned}
\left(\mathbb{E} d(X, S)^{r}\right)^{\frac{1}{r}} & =\left(\int_{E} d(x, S)^{r} \mathrm{~d} \mu(x)\right)^{\frac{1}{r}} \\
& \leqslant C_{r}\left[\left(\int_{\lambda B} d(x, S)^{r} \mathrm{~d} \mu(x)\right)^{\frac{1}{r}}+\left(\int_{(\lambda B)^{c}} d(x, S)^{r} \mathrm{~d} \mu(x)\right)^{\frac{1}{r}}\right] \\
& \leqslant 2 C_{r}\left[\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \cdot \varepsilon_{n}(B)^{1-\frac{r}{q}}+\left(\int_{E}\|x\|^{r} \cdot \mathbf{I}_{(\lambda B)^{c}}(x) \mathrm{d} \mu(x)\right)^{\frac{1}{r}}\right] .
\end{aligned}
$$

To treat the second summand we note that it equals

$$
\begin{equation*}
\left(\mathbb{E}\|X\|^{r} \cdot \mathbf{I}_{\left(\lambda^{r}, \infty\right)}\left(\|X\|^{r}\right)\right)^{\frac{1}{r}}=\left(\int_{\lambda^{r}}^{\infty} \mathbb{P}\left(\|X\|^{r}>t\right) \mathrm{d} t\right)^{\frac{1}{r}} \tag{A.2}
\end{equation*}
$$

The Chebyshev inequality allows to estimate

$$
\mathbb{P}\left(\|X\|^{r}>t\right) \leqslant \mathbb{E}\|X\|^{q} \cdot t^{-q / r}
$$

and thus (A.2) gives as an upper bound for the second summand the term

$$
\left[\mathbb{E}\|X\|^{q} \cdot(1-q / r)^{-1}\left[t^{1-q / r}\right]_{\lambda^{r}}^{\infty}\right]^{\frac{1}{r}}=C_{r, q} \cdot\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \cdot \varepsilon_{n}(B)^{\beta(1-q / r)}
$$

Since $\beta(1-q / r)=1-r / q$, we can continue the estimate of Lemma 14 to

$$
\left(\mathbb{E} d(X, S)^{r}\right)^{\frac{1}{r}} \leqslant C_{r, q} \cdot\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \varepsilon_{n}(B)^{1-r / q} .
$$

By (A.1), we have $\varepsilon_{n}(B) \leqslant 6 n^{-1 / d}$, which implies the assertion.
Proof of Theorem 6. By standard arguments, we may and will restrict to the case $n=2^{N}$. Denote $\alpha_{k}:=k^{-\sigma}$, and set in short

$$
S_{N}:=\sup _{j \leqslant N} \alpha_{2^{j}}^{-1} \cdot d_{2^{j}}(X, E, q)
$$

Since $N \mapsto S_{N}$ is monotone, we easily see that it suffices to show

$$
\begin{equation*}
r_{C_{1} \cdot 2^{N}}(X, E, r) \leqslant C_{2} \cdot \alpha_{2^{N}} \cdot S_{N}, \tag{A.3}
\end{equation*}
$$

with C_{1}, C_{2} depending solely on q, r, σ. Let us start by fixing random variables X_{j} such that rk $X_{j}<2^{j}$ and

$$
\left(\mathbb{E}\left\|X-X_{j}\right\|^{q}\right)^{1 / q} \leqslant 2 d_{2^{j}}(X, E, q), \quad j \leqslant N
$$

Set $X_{0}=0$ and write $Y_{j}:=X_{j}-X_{j-1}$. Clearly, we have rk $Y_{j}<2^{j+1}$ while $\left(\mathbb{E}\|X\|^{q}\right)^{1 / q} \leqslant C_{q}$. $d_{2^{j-1}}(X, E, q)$, and X admits a series representation

$$
\begin{equation*}
X=\sum_{j=1}^{N} Y_{j}+\left(X-X_{N}\right) \tag{A.4}
\end{equation*}
$$

In the following we have to separate the cases $r \geqslant 1$ and $r<1$. Below, we will denote with $C_{r, q, \sigma}$ a constant which may change from line to line, but depends only on r, q, σ.

Case 1. $r \geqslant 1$. In this case, $r_{j}(X, E, r)$ is additive, i.e., we have $r_{i+j}(X+Y, E, r) \leqslant r_{i}(X, E, r)+$ $r_{j}(X, E, r)$. For numbers $n_{j} \in \mathbb{N}$ to be specified later we infer from (A.4) that

$$
\begin{equation*}
r_{\sum_{j=1}^{N} n_{j}}(X, E, r) \leqslant \sum_{j=1}^{N} r_{n_{j}}\left(Y_{j}\right)_{r}+\left(\mathbb{E}\left\|X-X_{N}\right\|^{r}\right)^{1 / r} \tag{A.5}
\end{equation*}
$$

We apply estimate (14) on Y_{j} to derive

$$
\begin{align*}
r_{n_{j}}\left(Y_{j}, E, q\right) & \leqslant C_{r, q} \cdot\left(\mathbb{E}\left\|Y_{j}\right\|^{q}\right)^{1 / q} \cdot 2^{-\left(n_{j}-1\right) \cdot(1-r / q) / 2^{j+1}} \\
& \leqslant C_{r, q} \cdot d_{2^{j-1}}(X, E, q) \cdot 2^{-\left(n_{j}-1\right) \cdot(1-r / q) / 2^{j+1}} \\
& \leqslant C_{r, q, \sigma} \cdot S_{N} \cdot \alpha_{2^{j}} \cdot 2^{-\left(n_{j}-1\right) \cdot(1-r / q) / 2^{j+1}} \tag{A.6}
\end{align*}
$$

It is time to choose n_{j}. Set

$$
\beta_{j}:=(N-j)+\log _{2}\left(\frac{\alpha_{2^{j}}}{\alpha_{2^{N}}}+1\right)
$$

and define

$$
n_{j}-1:=1+\left\lfloor\frac{2^{j+1} \cdot \beta_{j}}{(1-r / q)}\right\rfloor .
$$

We may continue estimate (A.6) to

$$
\begin{aligned}
r_{n_{j}}\left(Y_{j}, E, r\right) & \leqslant C_{r, q, \sigma} \cdot S_{N} \cdot \alpha_{2^{j}} 2^{-\beta_{j}} \\
& \leqslant C_{r, q, \sigma} \cdot S_{N} \cdot \alpha_{2^{N}} 2^{j-N}
\end{aligned}
$$

This allows to derive from (A.5) and (A.6) the estimate

$$
\begin{align*}
r_{\sum_{j=1}^{N} n_{j}}(X, E, r) & \leqslant C_{r, q, \sigma} \cdot S_{N} \cdot \alpha_{2^{N}} \cdot\left(\sum_{j=1}^{N} 2^{j-N}+1\right) \\
& \leqslant C_{r, q, \sigma} \cdot S_{N} \cdot \alpha_{2^{N}} \tag{A.7}
\end{align*}
$$

It remains to estimate the sum over n_{i}. Since $\alpha_{2^{k}}=2^{-\sigma k}$,

$$
\begin{equation*}
n_{j} \leqslant 2+C_{r, q, \sigma} \cdot 2^{j+1} \cdot(N-j) . \tag{A.8}
\end{equation*}
$$

Hence, the sum is bounded by

$$
\begin{equation*}
\sum_{j=1}^{N} n_{j} \leqslant 2 N+C_{r, q, \sigma} \cdot \sum_{j=1}^{N} 2^{j+1}(N-j) \leqslant C_{r, q, \sigma} \cdot 2^{N} \tag{A.9}
\end{equation*}
$$

Together with (A.7), this proves (A.3) in the case $r \geqslant 1$.
Case 2. $r<1$. Only minor changes have to be made in the argumentation. We use instead of the additivity the r-additivity to derive from (A.4) that

$$
\begin{equation*}
r_{\sum_{j=1}^{N} n_{j}}(X, E, r)^{r} \leqslant \sum_{j=1}^{n} r_{n_{j}}\left(Y_{j}, E, r\right)^{r}+\mathbb{E}\left\|X-X_{N}\right\|^{r} \tag{A.10}
\end{equation*}
$$

We use the same numbers n_{j} as above, and have the estimate

$$
r_{n_{j}}\left(Y_{j}, E, r\right)^{r} \leqslant C_{r, q, \sigma} \cdot S_{N}^{r} \cdot \alpha_{2^{N}}^{r} \cdot 2^{r(j-N)}
$$

Thus, we can conclude from (A.10) that

$$
\begin{aligned}
r_{\sum_{j=1}^{N} n_{j}}(X, E, r)^{r} & \leqslant C_{r, q, \sigma} \cdot S_{N}^{r} \cdot \alpha_{2^{N}}^{r} \cdot\left[\sum_{j=1}^{N} 2^{r(j-N)}+1\right] \\
& \leqslant C_{r, q, \sigma} \cdot S_{N}^{r} \cdot \alpha_{2^{N}}^{r}
\end{aligned}
$$

By taking ($1 / r$)th power and regarding (A.9), estimate (A.3) follows.

References

[1] B. Carl, Inequalities of Bernstein-Jackson type and the degree of operators in Banach spaces, Ann. Inst. Fourier 35 (1985) 79-118.
[2] B. Carl, I. Stephani, Entropy, Compactness and Approximation of Operators, Cambridge University Press, Cambridge, 1990.
[3] J. Creutzig, Approximation of Gaussian random vectors in Banach spaces, Diss. FSU Jena, 2002.
[4] J. Creutzig, Relations between classical, average and probabilistic Kolmogorov widths, J. Complexity, 18(1) (2002) 287-303.
[5] S. Dereich, F. Fehringer, M. Matoussi, M. Scheutzow, On the link between small ball probabilities and the quantization problem for Gaussian measures on Banach spaces, J. Theoret. Probab. 16 (2003) 249-265.
[6] J. Diestel, H. Jarchow, A. Tonge, Absolutely summing operators, Cambridge Stud. Adv. Math. 43 (1995).
[7] E.D. Gluskin, Norms of random matrices and diameters of finite-dimensional sets, Mat. Sb. 120 (1983) 180-189.
[8] S. Graf, H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Mathematics vol. 1730 (2000).
[9] M. Ledoux, M. Talagrand, Probability in Banach Spaces, Springer, Berlin, 1991.
[10] W. Li, W. Linde, Approximation, metric entropy and small ball probabilities for Gaussian measures, Ann. Probab. 27 (3) (1999) 1556-1578.
[11] M. Lifshits, T. Simon, Small deviations for fractional stable processes, Ann. Inst. H. Poincarè Probab. Statist. 41 (4) (2005) 725-752.
[12] V.E. Maiorov, Average n-widths of the Wiener space in the L_{∞}-norm, J. Complexity 9 (1993) 222-230.
[13] V.E. Maiorov, About widths of Wiener space in the L_{q}-norm, J. Complexity 12 (1996) 47-57.
[14] V.E. Maiorov, G.W. Wasilkowski, Probabilistic and average linear widths in L_{∞} norm with respect to r-fold Wiener measure, J. Approx. Theory 84 (1996) 37-40.
[15] A. Pinkus, n-Widths in Approximation Theory, Springer, Berlin, 1985.

[^0]: E-mail address: creutzig@ mathematik.tu-darmstadt.de.

